UCID- 21422

IRCULATION CGPY

SUBJECT TO RECALL
IN TWO WEEKS

KRYSI, An ODE Solver Combining a
Semi-Implicit Runge-Kutta Method
and a Preconditioned Krylov Method

Alan C. Hindmarsh
Syvert P. Ngrsett

May 1988

This is an informal report intended primarily for internal or limited external
distribution. The opinions and conclusions stated are those of the author and
may or may not be those of the Laboratory.

Work performed under the auspices of the U.S. Department of Energy by the
Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government nor the University of California nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commerclal products, process, or service by
trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or the University of California. The views and
opinions of authors expressed herein do not necessarily state or reflect those of the United States Government
or the University of California, and shall not be used for advertising or product endorsement purposes.

Printed in the United States of America
Available from
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road
Springfield, VA 22161

Price Page
Code Range
A01 Microfiche

Papercopy Prices

A02 001-050
A03 051-100
Ao04 101-200
A05 201-300
A06 301-460
A07 401-500
A08 501 - 600

A09 601

KRYSI, An ODE Solver Combining a Semi-Implicit
Runge-Kutta Method and a Preconditioned Krylov Method™

Alan C. Hindmarsh
Computing & Mathematics Research Div.
Lawrence Livermore National Laboratory

Syvert Paul Ngrsett
Div. of Mathematical Sciences

University of Trondheim
7034 Trondheim-NTH, Norway

This report describes KRYSI. a solver for ODE initial value problems
that uses a combination of two powerful techniques in the case of
stiff systems. KRYSI is based on the SIMPLE solver, and (like SIMPLE)
uses a 3-stage 3rd order SDIRK method. When solving the implicit
stage equations in the stiff case. both use some form of Newton
iteration. But there, KRYSI (unlike SIMPLE) uses a Krylov subspace
iteration method, called SPIGMR : Scaled Preconditioned Incomplete
Generalized Minimum Residual method. The SPIGMR algorithm is outlined
in the SDIRK context. No explicit Jacobian storage is required,
except where used in preconditioning. The KRYSI package and its usage
are described briefly. One test (demonstration) problem is given,
along with a description of two preconditioners that are natural for
its solution by KRYSI. The KRYSI solution results are given, and
compared with those of LSODPK, a solver that combines a BDF method

with the same SPIGMR algorithm.

1. INTRODUCTION.

The Fortran package SIMPLE [3]) of Nersett and Thomsen is a solver for
stiff and nonstiff systems of ordinary differential equations (ODEs),

written

dysdt = £(t.y) . uyeRN (1)

with a given initial value vector g(to) = Yp- The method used is a
3-stage 3rd order SDIRK (singly diagonally implicit Runge-Kutta)
method, documented in [8,9) and references listed there. At each
stage of each time step. SIMPLE must solve a system of nonlinear

algeberaic equations of the form
F(Yi) = Yl—hvf(tn+clh.Yi)—b1 =0 . (2)

t. 1 is the stage

Here h is the current time step size, h = t -
n+tl n

index, 71 is the diagonal RK coefficient a - the c, are the RK
abscissae coefficients, and bi is a linear combination of known values

of f from previous stages.

The solution of the systems (2) is of central importance in achieving
an accurate and efficient numerical solution of stiff systems (1). In
the case of large N. this part of the total algorithm can easily
dominate all the others in both computational cost and memory

requirements. It is here that the solver KRYSI differs radically from

SIMPLE. The major difference is that, where SIMPLE uses a direct
linear system solver within a modified Newton iteration., KRYSI uses a
preconditioned Krylov subspace iteration within a (so-called) inexact
Newton iteration. Various Krylov methods, which have recently had
much attention in their own right as linear system algorithms, have
the potential for greatly reducing the storage and computational costs
in solving stiff systems. Earlier efforts in this area were carried
out by Gear and Saad ({7], Chan and Jackson [5]. and Brown and
Hindmarsh [3]. More recently. very encouraging results were obtained
by Brown and Hindmarsh [4] with a solver called LSODPK (based on the

general solver LSODE) that uses a BDF method in the stiff case.

2. METHOD DESCRIPTION.

The SIMPLE solver treats the system (2) with a combination of
fixed-point and modified Newton iteration. Iterates Y° approximating

Yi are generated from a prediction Y0 that uses an appropriate

extrapolation formula (also 3rd order). Fixed-point iterates are
defined by
SRR Y o W (3)

vhile modified Newton iterates are defined by

(I-h) (rS1-ySy = -F(YS) . (4)

In (4). J = 0f/3y is the Jacobian, evaluated at some nearby point
(t.y). and kept fixed over subsequent stages. and also over some
subsequent time steps. The decision algorithm for switching between
(3) and (4). and for wupdating J in (4), is sumarized in [9].
Iteration is stopped with a convergence test. Of course, when the
problem is truly stiff. this algorithm chooses the Newton method
almost exclusively. In the Newton case, the linear systems (4) are
solved directly. with a dense matrix LU factorization of -J+(1/h71)1

followed by back-substitutions as needed.

The KRYSI solver retains, as far as possible, the strategy in SIMPLE
for choosing between fixed-point (nonstiff) and Newton-like (stiff)
iterations. But at each point in the algorithm where an algebraic
system (2) must be solved and the system (1) is considered stiff. the
approach taken is a combination of a Inexact Newton Method [6] and a

preconditioned Krylov (linear) iteration (4.10]. An Inexact Newton

Method is one in which the Newton correction AY® = YS+1—YS does not

solve (4) exactly, but instead satisfies

F'(YS) aY° = -F(YS)+rS (5)
with the residual vector r° subject to some tolerance control. Note
that the matrix in (5) is the exact Jacobian of the funtion F in (2).

so that, aside from the residual r°, (8) represents a true Newton

iteration, rather than a modified Newton iteration.

The linear system to be solved (approximately) can be restated as

Ax = b (6)
with

A = I-th(tn+cih.YS) .

b=-F(YS) . and (7)

x = AYS = yS*1yS

An iterative method applied to (6) produces iterates Xp from some
initial guess Xp" and includes a convergence test to stop the
iteration.
L4

The particular iterative method used in KRYSI is called SPIQR :
Scaled Preconditioned Incomplete Generalized Minimum Residual [4]. It
has evolved from a basic Generalized Minimum Residual (GMRES) method
due to Saad and Schultz [11]. It is one of several so-called Krylov
subspace iteration methods. which are characterized by the feature
that each iteration only requires A in operator form, i.e. it only

requires values of the matrix-vector product Av. A Krylov method

f inds successive approximations Xo by adding to Xg @ correction vector
chosen from an ¢€-dimensional subspace (the Krylov subspace). GMRES
makes a particular choice that minimizes the residual in norm. The
“incomplete” (or truncated) version is a generalization in which each
new basis vector for the Krylov supspace is made orthogonal to only a
specified number of previous basis vectors., rather than all of them,
and allows for reduced expense when A is nearly symmetric. Scaling
was added to account for the weights (closely related to error
tolerances) that are involved in all norms of error-like vectors
throughout the ODE solver. Finally, provision was made for
user-supplied preconditioning by matrices on both the left and right
of the wmatrix A. to enhance the robustness of the method. More

specifically, a diagonal scaling matrix D is defined such that the

weighted root-mean-square norm

-1
Vil one = D vn2 (8)
is the approriate choice consistent with the ODE error control. and
preconditioners P1 and P2 are to be supplied such that each PJ is
relatively easy to invert, while Ple approximates A in some sense.
Then the SPIGMR algorithm amounts to the application of the incomplete

CMRES algorithm to the equivalent system

B
X
n
ol
<
-
-
=

(9)

>
|
UI
[y
o
=l
%n-
N
—
=
»®
It
o
R
X
o
1]
(e
B
o

instead of to (6).

Perhaps the most important aspect of the entire algorithm is the

manner in which the product Av is obtained within each iteration. For

any given vector v, we have by (7)
Av = v - hr J(t.YS)v . (10)

A major goal of the Krylov method is to avoid having to construct J
explicitly for this (or any) purpose. We do this by replacing the

product Jv in (10) by a difference quotient approximation
J(t.Y)v = [f(t.Y+ov)-f(t.Y)]/0o (11)

with o a suitably small parameter. In fact, since the diagonal
elements of D in (8) are proportional to tolerances., and thus a vector
vwhose WRMS norm is 1 is considered a '"small” vector, we use o =

1/uvi in (11).

WRMS
The SPICMR algorithm is given in more specific terms below. The
maximun nunber of iterations is emax' An incompleteness parameter p
is given, with the complete (non-truncated) casé given by p = emax'
The stopping criterion is Pp = "bFAXCNURHS < 8§, or "rS"URHS < § in
(5). The test constant § is 81 € where € = .5 is the stopping
test constant used in the nonlinear iterations (correction less than
€ in weighted norm), and 81 <1 is a heuristic constant. The norm Pe
is computed indirectly from other data generated in the algorithm: the
approximate solution vector Xe itself is not computed until the last
iteration (on convergence). The initial guess is taken to be Xp = 0.
although the algorithm is given below for general Xg- The implemented

algorithm actually allows the case emax = @, and in that case it

returns either Xp = 0., if nbuanS < §, or x = P;lpilb otherwise.

Other algorithmic details are given in [4], and a convergence theory

for it in the inexact Newton setting is given in [2].

SPIGMR Algorijthm:

1. (a) ro = b—AxG: stop if "rO"URHS < 8.

_n1l,1 ~ S|
(b) re = D P1 To’ compute Hiryli, = HP1 ro'WRHS

~ -~

s _1 _ ~
&' = BIIP1 r@"URnS/“rOMURHS' v, = re/llroll2

1.2,....¢ . do:

2. For ¢ max

PO Tk B Py
(a) Compute A Ve = D P1 A P2 DVC'

~

(b) Ye41 T A VC_Ef_. hievi' where ig = max(1,¢-p+l),
i=i
@
hie = (A ve.vi).

(€) hgype = "Weuqlar Veur = Yeurhpaq g

(d) Update QR factorization of ﬁe = (Eij) (an (€+1) x & matrix).
(e) Compute residual P indirectly.

(£) 1f P < &', go to Step 3; otherwise go to (a).

; ~ - T T_VEls 1oz
3. Compute Hrouzozel = (9p.9) v 2 =V,Rp g Xp = Xg*Py Dz

The inclusion of the SPIGMR algorithm into the SDIRK algorithm
implemented in SIMPLE is rather straightforward. The modified Newton
algorithm in SIMPLE becomes an inexact Newton algorithm. The logic in
SIMPLE associated with re-evaluating J is used in KRYSI to decide
whether to call on the user to re-evaluate parts of J (if any) that
are involved in the preconditioner matrices P1 and P2. In the event
that SPIGMR fails to converge (which has no analog in SIMPLE), the
algorithm in KRYSI either re-evaluates the PJ and tries the time step
again (if the Pj involve Jacobian data and are out of date). or else

reduces h to h/74 and repeats the time step. The factor 1/4 is purely

heuristic.

There are two minor algorithmic differences between the KRYSI and
LSODPK versions of SPIGMR. One is that on the first Newton iteration
in each KK stage, at least one linear iteration is performed (an
immediate return in Step 1(a) is disallowed)., in order to avoid a
tfailure of the stiffness estimation procedure in KRYSI (which uses
values of a norm of x = AYS). The other is that in the LSODPK version
of SPIGMR, if ¢ = emax iterations have been done and the stopping test
P < &’ has still not passed., SPIGMR is nevertheless considered to
have converged if either (a) Py < 1. or (b} this is the first
Newton iteration and e < "rOHURHS' In the KRYSI version, only

condition (a) is allowed.

3. QODE DESCRIPTION.

Since the SIMPLE code is fully described elsevhere [9], what follows

is a description of the differences between the KRYSI solver and

SIMPLE.

The transformation of SIMPLE to KRYSI was greatly facilitated by

a) the modular structure of SIMPLE, and b) the existence of the
solver LSODPK. which implements various preconditioned Krylov methods
in combination with the BDF method for ODE systems. Of the Krylov
methods in LSODPK. the one most highly recommended in [4] for general
situations is SPIGMR. Furthermore, the modular structure of LSODPK

made it possible to move the SPIGMR algorithm into the KRYSI code with

very little effort.

The changes made to SIMPLE were largely confined to three areas, which

are sumarized below.

(1) The name of the driver subroutine SIMPLE was changed to KRYSI,
with the call sequence augmented by several items related to the
SPIGMR algorithm, and corresponding wminor changes were made to the
subroutine body. One change was first made in SIMPLE that was not
related to the algebraic system method. but rather to the tolerances:

The absolute tolerance parameter AEPS was changed from a scalar to an
array, since this is a commonly needed feature. At the same time the
relative tolerance REPS is limited to value > 10@%(unit roundoff),
with the machine unit roundoff supplied by a separate routine (R1MACH
in single precision. DIMACH in double precision). Call sequence items
added to KRYSI include names of routines to preset and solve the

preconditioner matrices., work spaces (real and integer) associated

10

with the SPIGMR algorithm and (separately) with preconditioning, a
flag to indicate the presence/absence of optional inputs. and a flag
to indicate the type of preconditioning (none, left or right only, or
both sides). The SIMPLE arguments DF, IDF. AJAC. ALU. and PWORK were
removed. The Common block /STATS/ containing run statistics was
altered to include quantities related to SPIGMR. The optional inputs
are the constants emax (= MAXL). p (= KMP). and 81 (= DELT) discussed
in the previous section. Subroutine KRYS] includes added coding to
compute and save the error weights REPS|Y(i)|+AEPS(i). and to handle

an unrecoverable error in either the evaluation of a preconditioner or

in the SPIGMR iteration.

(2) In place of the routines DFDEC, DF, DFN. DECOMP and SGEFA/DGEFA
in the SIMPLE sover. for the calculation of the Jacobian J and
factorization of -J+(1/h7)I, KRYSI has a subroutine PKSET devoted to
the preprocessing associated with the preconditioners, if any. PKSET
calls the user-supplied routine JAC to compute any part of the
Jacobian that either preconditioner might use, say Jpart' and also to
do a factorization of the corresponding matrices I-h7Jpart if a direct
method is to be used on these preconditioners. A sophisticated user
may even save the matrix Jpart in separate storage, and if
circunstances warrant it, redo only the factorization when ht has
changed since the last call to JAC. One differnce between the JAC
routine in KRYSI and that in LSODPK is that the former must compute
the current f(t,y) if needed (e.g. for difference quotients), while

this vector is available for use by JAC in LSODPK.

(3) In place of the routines SOLVE and SGESL/DGESL in the SIMPLE
solver, KRYSI has subroutines SOLPK, SPIGMR. ATV, ORTHOG, SHEQR/DHEQR,

SHELS/DHELS (the first letter of the name depending on the precision,

- 11 -

in the last two), and some of the BLAS routines, which. as a group,
carry out the SPIGMR algorithm. These routines were taken from the
LSODPK solver. and used with only relatively minor changes.
Considerable shortening of the interface routine SOLPK was done (it
calls one of four iterative linear solvers in LSODPK. but only SPIGMR
in KRYSI). Some changes were made in the call sequences of SOLPK,
SPIGMR, and ATV. mainluy just changes in variable names. The
programming of all norm calculations was changed. because KRYSI keeps
the error weights themselves, while LSODPK keeps their reciprocals
(trading divide operations for multiply operations). The SPIGMR
routine also calls the user-supplied routine PSOL to compute the
solutions u of preconditioner systems Pj u=v for given vectors v.

Also, ATV calls the user's right-hand side routine F in accordance

with (11).

A complete block diagram of the KRYSI package. excluding BLAS
routines, is shown in fig. 1. The wuser's calling program and
user-supplied subroutines all appear on the left (with F repeated for

simplicity).

12

KRYSI

START

JAC

R1MACH
INTPOL

NEWS

PKSET
NOLEQ
SOLPK
SFIGMR
SHEQR SHELS

Figue 1.

Block diagram of KRYSI.

- 13 -

The primary goal of the replacement of a traditional method by a
Krylov method is the reduction in storage requirements for large
systems. So consider the storage needs of the SIMPLE and KRYSI
solvers. Both use a work array of size 14 N, plus the (length N) Y
and AEPS arrays, for ODE algorithm matters that are not directly
~elated to the algebraic system problem. Beyond that. SIMPLE requires
2N2+N words of storage for the Jacobian. the factored Newton matrix,
and pivot information. In place of this, KRYSI requires
(Cmax+2)N+€max2+4€max+1 words (all real) for the GMRES algorithm. plus
real and integer arrays APRE and IPRE for use in preconditioning. with
contents and lengths that are completely up to the user. Thus a
direct comparison is difficult, but we can consider some typical
values from tests described in [4]. The default value of emax is 5.
and this is usually sufficient when preconditioning is used. Thus the
typical GMRES work space is 7N+46 words. Test problems from various
reaction-transport systems in 1, 2. and 3 space dimensions have been
solved with BDF/Krylov method combinations [3,4]., and the sun of the
lengths of the real and integer preconditioner work arrays is
typically some reasonable multiple of N, say kpreNﬂ Values of kpre in

the tests range from @ to 21. Thus the typical ratio of total

storage requirements for SIMPLE to KRYSI is
2
(2N +17N)/(16N+7N+46+kpreN) x (2N+17)/(23+kpre)

Thus for (say) kpre ~ 20 and N large, a reduction in storage by a

factor of about N/20 is achieved. For any N > 100, this represents a

rather dramatic reduction.

- 14 -

4. USAGE OF KRYSI.

The user instructions for the KRYSI solver are given in the initial
blocks of comment lines, which are reproduced below. These
instructions are the same as for SIMPLE except for arguments related
to the preconditioned Krylov iteration method. Since the latter is
invoked only in the stiff case. a user with a nonstiff problem will

see no advantage to KRYSI over SIMPLE.

SUBROUTINE KRYSI(N,F,JAC,PSOL,Y,T,TEND, AEPS, REPS, APRE, IPRE,
& WORK, WK, IWK, IOPT, JPRE, IFLAG,OUTPUT,IPT}

cceeeececeeceeecccecceecceecceccecceccccececcecccceececececececceccececcececcceccce

KRYSI SOLVER FOR INTEGRATING Y'=F(T,Y] , Y(T)=GIVEN AS Y

OVER THE INTERVAL (T,TEND) USING

A SEMI-IMPLICIT RK-METHOD OF NORSETT AND THOMSEN,

IN COMBINATION WITH A PRECONDITIONED KRYLOV SUBSPACE ITERATION
METHOD (SCALED INCOMPLETE GENERALIZED MINIMUM RESIDUAL METHOD!.
SEE COMMENTS IN SUBROUTINES NEWS AND SPIGMR.

VERSION OF 18 SEPTEMBER 1987.
THIS VERSION IS IN SINGLE PRECISION.

INPUT PARAMETERS ARE:
N : INTEGER GIVING THE NUMBER OF EQUATIONS

F : SUBROUTINE FOR RIGHTHAND SIDE.
SUBROUTINE F(T,Y,R)
REAL T.Y(N),R(N)
R=F(T.,Y)

JAC : SUBROUTINE FOR THE COMPUTING JACOBIAN ELEMENTS
NEEDED FOR PRECONDITIONING.
SUBROUTINE JAC(F N, T,Y,EWT,FTY, FTEM, GAH,
APRE, IPRE, JFLAG)
REAL Y(N),EWT(N), FTY(N),6 FTEM(N),
APRE(1), IPRE(1)
THIS ROUTINE MUST EVALUATE AND PREPROCESS ANY
PARTS OF THE JACOBIAN MATRIX DF/DY USED IN THE
LEFT AND RIGHT PRECONDITIONER MATRICES, P1 AND P2.
FTY IS SPACE FOR THE CURRENT VALUE OF F(T,Y),
AND SHOULD BE LOADED BY A CALL TO F IF NEEDED.
FTEM IS WORK SPACE, E.G. FOR VALUES OF F(T,Y+E)
FOR USE IN DIFFERENCE QUOTIENTS APPROXIMATIONS.
ON COMPUTING JACOBIAN ELEMENTS, JAC MUST MULTIPLY
ALL COMPUTED ELEMENTS BY -GAH AND ADD THE
IDENTITY MATRIX, THEN DO ANY FACTORING
OPERATIONS NEEDED FOR LATER SOLUTION OF LINEAR
SYSTEMS.

OO

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO000OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

PSOL

I0PT

JPRE

Y(N}

TEND

JAC MAY SAVE JACOBIAN ELEMENTS FOR REUSE, WITH
ONLY A CORRECTION OF THE GAH FACTOR, AND A
REFACTORING OF THE MATRIX. IF THIS STRATEGY IS
USED, JAC SHOULD REEVALUATE JACOBIAN ELEMENTS
(AND ASSEMBLE AND FACTOR THE MATRIX) WHEN
JFLAG = -1 ON INPUT, AND OTHERWISE ONLY REASSEMBLE
USING THE SAVED ELEMENTS AND REFACTOR.
THE MATRIX P1*P2 SHOULD APPROXIMATE

IDENTITY - GAH* (DF/DY).
ON RETURN JAC SHOULD SET JFLAG AS FOLLOWS..
JFLAG = 1 IF SUCCESSFUL, WITH NO EVALUATION OF

RELEVANT JACOBIAN DATA

JFLAG = 2 IF SUCCESSFUL, WITH EVALUATION OF
RELEVANT JACOBIAN DATA
JFLAG = -3 If NOT SUCCESSFUL (THE STEP WILL

REDUCED AND RETRIED) .

SUBROUTINE FOR SOLVING LINEAR SYSTEMS WITH A
PRECONDITIONER (P1 OR P2) AS COEFFICIENT MATRIX.
SUBROUTINE PSOL(N,T,Y,SAVF, TEMP, GAH, APRE, I PRE,
B.LR, IER)
REAL Y(N),SAVF (N}, TEMP(N), B(N},
APRE(1}, IPRE(1)
THIS ROUTINE MUST SOLVE A LINEAR SYSTEM WITH B
AS RIGHT-HAND SIDE AND ONE OF THE PRECONDITIONERS
P1 OR P2 AS COEFFICIENT MATRIX, AND RETURN THE
SOLUTION IN B. LR IS A LEFT~-RIGHT FLAG (INPUT}.
PSOL IS TO USE P1 IF LR = 1 AND P2 IF LR = 2.
PSOL CAN USE DATA GENERATED IN THE JAC ROUTINE
AND SAVED IN APRE AND IPRE. THE ARGUMENT GAH IS
THE CURRENT VALUE OF THE SCALAR APPEARING IN
THE LINEAR SYSTEM. IF THE OLD VALUE, AT THE
TIME OF THE LAST JAC CALL, IS NEEDED, IT MUST
HAVE BEEN SAVED BY JAC IN APRE.
TEMP IS A WORK ARRAY OF LENGTH N.
ON RETURN, PSOL SHOULD SET IER AS FOLLOWS:
IER = @ IF PSOL WAS SUCCESSFUL,
IER .GT. @ IF A RECOVERABLE ERROR OCCURRED,
MEANING THAT THE STEP WILL BE RETRIED
WITH THE SAME STEP SIZE BUT WITH A
CALL TO JAC FIRST TO UPDATE P1 AND P2,
OR THEIR FACTORIZATIONS,
IER .LT. 8 IF AN UNRECOVERABLE ERROR OCCURRED
(TIME STEP SIZE WILL BE REDUCED) .

FLAG FOR PRESENCE OF OPTIONAL INPUTS.

IOPT = 8 MEANS DEFAULT VALUES ARE USED.

I0OPT = 1t MEANS INPUTS ARE READ FROM. ..

WK(1}) = DELT = KRYLOV CONVERGENCE TEST CONSTANT
DEFAULT IS DELT = .@5.

IWK (1) = MAXL = MAXIMUM NUMBER OF VECTORS SAVED IN
KRYLOV ITERATION. DEFAULT IS MAXL = 5.

IWK(2) = KMP = NUMBER OF VECTORS ON WHICH

ORTHOGONALIZATION IS DONE IN KRYLOV
ITERATION. DEFAULT IS KMP = MAXL.
IF JACOBIAN IS SYMMETRIC, USE KMP=2.

PRECONDITIONER TYPE FLAG.

JPRE = @ FOR NO PRECONDITIONING.

JPRE = 1 FOR LEFT-ONLY PRECONDITIONING.
JPRE = 2 FOR RIGHT-ONLY PRECONDITIONING.
JPRE = 3 FOR PRECONDITIONING ON BOTH SIDES.

ARRAY CONTAINING THE STARTING VECTOR
IN RETURNING Y=Y (TEND)

STARTING POINT OF INTEGRATION

ENDPOINT OF INTEGRATION

AEPS, L REPS

ERROR TOLERANCE CONTROL PARAMETERS.
THE ERROR IS CONTROLLED IN THE FOLLOWING WAY:
ABS(LOCAL ERROR(I})) < AEPS(I} + REPS * ABS(Y(I))

THE WORKING AREA IS GIVEN AS
WORK

APRE, IPRE

WK, IWK

REAL ARRAY OF LENGTH 14*N
REAL AND INTEGER WORK SPACES FOR PRECONDITIONING.
THE LENGTHS AND STRUCTURE OF APRE AND IPRE ARE
UNDER USER CONTROL IN THE JAC AND PSOL ROUTINES.
REAL AND INTEGER WORK ARRAYS FOR KRYLOV
ITERATION METHOD AND OPTIONAL INPUTS.
WK LENGTH = 7*N + 46 FOR DEFAULT INPUTS.
FOR GENERAL VALUES OF THE OPTIONAL INPUTS
MAXL AND KMP, THE LENGTH OF WK IS

(MAXL+2)*N + MAXL®* (MAXL+4) + 1
IWK LENGTH = 2.

CONTROL VARIABLE:

IFLAG:

OUTPUT

INTEGER FOR OUTPUT INFORMATION.

=1 INDICATES SUCCESSFULL COMPLETION OF STEP
WITH OLD JACBIAN

=2 AS FOR =1 BUT WITH NEW JACOBIAN IN LAST STEP

IPT = 1 IF OUTPUT ROUTINE IS SUPPLIED ELSE @
SUBROUTINE OUTPUT IS A SUBROUTINE GIVEN BY USER
CALL OUTPUT(X,Y) WHERE :

X : NEXT OUTPUT POINT . T < X < TEND WITH

SOLUTIONS AT T AND TEND ALWAYS GIVEN.

Y(X) IS HANDED OVER TO USER WHO IS ASKED

TO GIVE THE NEXT OUTPUTPOINT

IN ADDITION TO THE CALL SEQUENCE, INFORMATION IS ALSO SUPPLIED

IN THE COMMON BLOCK

COMMON /STATS/ NS,NFX,NF,NNI,NNS,NLI,NPE,NPF,NPS, 6 NCFL
THE STATISTICS IN /STATS/ HAVE THE FOLLOWING MEANING. .

NS
NFX
NF
NNI
NNS
NLI
NPE
NPF
NPS
NCFL

NUMBER
NUMBER
NUMBER
NUMBER
NUMBER
NUMBER
NUMBER
NUMBER
NUMBER
NUMBER

TIME STEPS

STEPS WITH FIXPOINT ITERATION

F EVALUATIONS

NONLINEAR ITERATIONS (FIXPOINT OR NEWTON)

NEWTON ITERATIONS

LINEAR ITERATIONS (BY KRYLOV METHOD)

PRECONDITIONER EVALUATIONS

PRECONDITIONER FACTORIZATIONS

PRECONDITIONER SOLVES, I1.E. PSOL CALLS

CONVERGENCE FAILURES OF THE LINEAR ITERATIVE SOLVER

CCCCcceeeececececececcecececcccecccecceeccececcecceeccecceccecceececcecececccecccececccecceccceccecceccccececcccecccec

The KRYSI solver has been subjected to very little testing so far,
especially by comparison with LSODPK. For the earliest development
and debugging phases., a small problem (3-species Robertson Kkinetics
problem) was used., and is successfully solved by KRYSI. But its small
size makes it meaningless as a test of the capabilities of KRYSI. A
larger problem, described below. has been incorporated into a
demonstration program for KRYSI. It is also used as the demonstration
problem for LSODPK. and is one of the test problems described in [4]
(namely Test problem 2) with slight differences in parameter values.
Various reduced versions of this problem were also used for debugging,

but are of no interest otherwise.

The demonstration problem is a semi-discrete form of a system of
reaction-diffusion PDEs arising from multi-species food web models.
It is a predator-prey model in which the various animal species
experience interaction and simple diffusion. The general form of

these models, for s species in two dimensions, is

aclsat = fi(x.g.t.c)+di(c;x+c;g) (i = 1.2..... s).

with

s
fi(x.g.t.c) = cl(bi+ E aiij)

The interaction and diffusion coefficients (aij'bi‘di) could be
functions of (x.y.t) in general. The choices made for this test
problem are for a simple model of p prey and p predator species

(s = 2p). arranged in that order in the concentration vector c. We

18

take the various coefficients to be as follows :

a =-1 (alli)
1 . -6 . _

- - =, >
3y 510 (i <p. J2>0p)
a,, =10° (i >p j<p)

1] ' =

(all other a " @),

o
1}

(1+oxy) (1 < p)

=2
n

“(ltoxy) (i > p)
d =1 (i<p)
d = .05 (i>p)

The domain is the unit square ® < x,.y <1, and @ < t < 10. The
boundary conditions are of Neumann type (zero normal derivatives)
everywhere. The coefficients are such that a unique stable
equilibrium is guaranteed to exist in the constant coefficient case o
=9 [1]. namely c = —A_lb. and empirically the same appears to be true

for a > @. In this problem we take a = 1.

The initial conditions used for this problem are taken to be simple

peaked functions that satisfy the boundary conditions, given by the

polynomial function

c'(x.y) = 10+i[16x(1-x)y(1-y))% (1 ¢ i <),

which varies between 10 and 10+i.

This PDE system (plus boundary conditions) is discretized in space by
way of central differences on a uniform MxM mesh, resulting in an ODE

system of size N = 2p Hz. The ODE for species i at the point (xJ.gk)

is

i

ik~ fi(xj'gk't'cjk)

i i i i
Cirl.k %551,k Cj.k+1 %%k 4, k-1
+d +
1 a2 N
(1 =1,..,s; jand k = 1,... M)
= - = i i o=

where Ax = Ay = 1/(M-1), and ik {cjk i=1,...,s}.

The boundary conditions are simulated by taking

i _ i i _ 1
ok~ S2k ' CMei.k = OM-1.k (all k)
i i i i .
CJ.G = cj.2 ' cj.H+1 = CJ.H—I (all j)
for all i. The ODE system y = {f is organized with a vector y
ordered by i, then j, then k: y = (011'021""'CH,l""'CHH)'

The ODE system is stiff, and an estimate of the spectrun is easily
obtained f{from the interaction terms fi‘ for which the dominant
eigenvalues are about —104p(1+axy) for the components at a mesh point
(x,y). However, the diffusion terms cause the profiles to flatten out

at steady state, so that the equilibrium values of any species ci are

20

zpread by a factor of only about 1.88 rather than l+a = 2 (though the
spread factor exceeds 2 during the transient). The discrete diffusion

terms contribute significantly to the stiffness also.

The particular sizes chosen here are p=4 (s=8)and M =6 (N =
288). However, the program is written for general values of these

parameters., and requires minimal changes if different values are

substituted.

Two preconditioners are used with this problem. One is based on the
diffusion terms only and is applied as a left preconditioner Pl' The
other is based on the interaction terms f1 only, and gives a right
preconditioner PZ' Both are based on rather general ideas that apply
to reaction-transport problems of various kinds. and are described
fully in [4]. But they will be sumarized here for the sake of
completeness. The combining of two preconditioners in this way
resembles an operator-splitting approach. but is more robust than
traditional operator splitting because of the various convergence

tests and error controls.

The diffusion-based preconditioner arises by ignoring completely the
interaction contributions to the Jacobian J in the system (I-hrJ)u =
v. The resulting approximate system consists of s decoupled MxM

systems, each of which corresponds to the semi-discrete form of a

simple diffusion equation
dc/dt = d(c__+c.)
XX yy

These linear systems are amenable to various classical iterative

methods. We have chosen to apply five Gauss-Seidel iterations to the

21

MxM system. If the coefficient matrix is written as D-L-U (D
diagonal, L lower triangular. U upper triangular)., then the initial

guess u0 has the form (D—L)—lv. and the iteration is given by

Jd™ - 6 W™+ (L) Ly (m=0.1....)

6 = (D-L) v

The interaction-based preconditioner completely ignores the diffusion

terms, and so gives a block-diagonal matrix

P2 =1 - hr diag(Rll.R21 RHM)

in which R, approximates the sxs interaction Jacobian afl/dc at the

JKk
spatial point (xj.uk). Considerable further economy (in storage and
computation) is gained if, instead of forming and using all Hz of
these sxs matrices, we partition the grid into groups of mesh points
and take only one point in each group at which to evaluate Rjk' using
this matrix in P2 for all of the points in the group. We have chosen
a simple 2x2 Cartesian partition of the 6x6 mesh, so that Rjk is
evaluated at each of only 4 points, each of those representing a group
of 9 points. Each Rjk evaluated is approximated by difference

quotients, and the wmatrices I - thJk are LU-factored for later

solution of the linear systems qu = v.

The demonstration program integrates the above ODE system with KRYSI
using tolerances REPS = AEPS(i) = 10-4. and prints output at

-8 ,,-7 -1

t =10 .10 1,2,....10. Default values were used for the

.. 10
SPIGMR parameters. The results reported below are from runs on a
CRAY-1 at LLNL. The accuracy of all solution values was quite

acceptable and consistent with the tolerances used. The wvarious

22

counters of interest are :

NS = 223 = no. time steps

NFX = 145 = no. fixed-point (nonstiff) steps

NF = 2237 = no. f evaluations (excluding calls
in START)

NNI = 1677 = no. nonlinear iterations (fixed-point or
Newton)

NNS = 457 = no. Newton iterations (no. linear systems
solved)

NLI = 560 = no. linear (Krylov) iterations

NPE = 20 = no. preconditioner evaluations

NPS = 1658 = no. preconditioner solves

RT = 8.48 = runtime in CPU sec. (excluding output)

It should be noted that the number of factorizations of the block-

diagonal preconditioner matrices was also NPE (no saving and re-use of
the Rjk was done). There were no convergence failures of the SPIGMR
algorithm. The fixed point steps were all taken on an initial

interval, roughly © <t < 10_3. and 1205 f evaluations were done on

these steps.

Some observations are easy to make. The nonstiff part of the problem

(145 steps) used an average of 8.3 f evaluations per step. or 2.8 per

RK-stage. The stiff part (78 steps) used an average of 5.9 Newton
iterations per step, or 1.95 per stage, and 1.23 linear iterations per
Newton iteration. The f counts from Newton iterations (one each) and
linear iterations (one each) add up to 1017. which differs from the
observed value 2237 - 1205 = 1032 f{for the stiff interval. The

discrepancy (learned from an extra diagnostic run) is due to five

23

steps in which fixed point iteration was attempted again, but rejected
immediately, using an additional 15 f values in the process. The
SPIGMR algorithm is having no difficulty with the linear systems,
although the average iteration count (= average Krylov subspace
dimension) of 1.23 is somewhat deceptive. The average over the last

24 steps, covering 1 < t < 10, is 1.90.

The storage requirement for KRYSI on this problem was 6960 words (real
and integer), or about 24.2 N. This can be compared with the storage
required for SIMPLE to solve the same problem, namely (2N+17)N = 593N

= 170,784, higher by a factor of about 24.5.

For comparison, runs of the LSODPK demonstration program were made,
solving the same problem with the same SPIGMR input parameters and on
the same machine. When run with the same tolerances (all 10_4). the

statistics were as follows:

NS = 163 (all steps considered stiff)
NF = 433

NNI = 192 (all Newton iterations)

NLI = 240

NPE = 29

NPS = 806

RT = 2.06

However, a direct comparison is not fair if the accuracy achieved is
different for the two solvers. Thus a high accuracy solution (with
10—7 tolerances) was generated. and a calculation of the maximum
relative error was added to both demonstration programs. (Relative

error is the appropriate choice, since all components stay well above

24

the absolute tolerance.) As a result, the KRYSI run with 10_4

tolerances was found to have a maximum relative error of 1.3-10_4.

while that of the corresponding LSODPK run was 15-10_4. over 11 times

larger.

To perform a fair comparison. further runs were made with LSODPK with
tighter tolerances until the maximun error reached was (roughly) the
same value as for KRYSI. This happened at a tolerance of 5-10—6.

giving a maximun relative error of 1_2.10_4_ The statistics for this

run were as follows :

NS = 257
NF = 685
NNI = 303
NLI = 381
NPE = 34
NPS = 1282
RT = 3.23

If we regard the time interval as divided into stiff and nonstiff
parts at t = 10_3. then LSODPK spent 124 steps and 294 f{ evaluations
(2.4 per step) in the nonstiff interval. and 133 steps and 391 f
evaluations (2.9 per step) in the stiff interval. The overall average

nunber of linear iterations per Newton iteration was 1.26, and in 1 <

t < 10 (45 steps) it was 2.11.

25

The comparison of the last run with the KRYSI run (both achieving
nearly the same accuracy) can be summarized as follows : LSODPK takes
considerably more steps than KRYSI in the stiff interval (133 vs 78),
and slightly fewer steps in the nonstiff interval, but a much smaller
nunber of nonlinear iterations per step in both intervals. The run
time ratio, 2.63, roughly reflects those higher costs per step in
KRYSI. Since the SPIGMR algorithm by itself is performing very
similarly in the two runs. the cost difference can be attributed
entirely to the relative performance of the SDIRK and BDF methods on
this problem. On a problem in which BDF would have difficulty for
reasons of stability, the relationship between the two solvers might
be just the reverse. The total storage requirement of LSODPK on this

problem was about 20.3 N. slightly less than that of KRYSI.

26

6. CONCLUSIONS.

The KRYSI package has been developed as an experimental solver for
stiff systems. It combines an SDIRK algorithm as the ODE integration
method with SPIGMR (Scaled Preconditioned Incomplete Generalized
Minimun Residual method) as the iterative solver for the linear
systems that arise within the Newton method solution of each RK stage.
The combinatioon appears to work, although so far it has been tested

on only one problem of realistic proportions.

The usage of KRYSI requires preconditioner matrices from the user. and
to this extent it relies on the ability of the user to identify the
dominant contributions to the stiffness of the problem, and construct

efficient preconditioners accordingly.

On the other hand, KRYSI includes many features of “black box"
solvers, including local error control in the integration steps, and
convergence control in the nonlinear and linear iterations. Thus for
a large and difficult stiff system, KRYSI combines the best properties
of two contrasting approaches - a powerful easy-to-use general (but
inefficient) solver. and a completely problemspecific and efficient

(but hard to set up) ad hoc solution algorithm.

KRYSI resembles the LSODPK solver. which (in the stiff case) combines
a BDF integration algorithm with SPIGMR and other KRYLOV iterative
linear system algorithms. In the one comparison test done with both
solvers., LSODPK was more efficient. but for reasons that relate to the
merits of SDIRK vs BDF on the particular problem., and not to the use

of an iterative linear system solver.

Clearly, much more testing is needed, and suitable tuning within KRYSI
is likely to enhance its performance. The SDIRK algorithm in KRYSI
could benefit from some enhancenments that are used in BDF solvers
(e.g. anticipated convergence of Newton iterations). The SPIGMR
algorithm in KRYSI could probably benefit from tuning ideas related to
the context of a multi-stage SDIRK method (e.g. reuse in later stages

of Krylov subspace basis vectors generated in the first stage).

7. AKXOWLEDGEMENTS.

The bulk of the work described here was done during a visit by the
first author to NTH. Trondheim, Norway. in September 1986. The
support of the Department of Mathematical Sciences at NIH and of

STATOIL (VISTA Program) is gratefully acknowledged.

The support of Lawrence Livermore National Laboratory, during and

after that visit is also gratefully ackowledged.

(1]

(2]

(3]

[4]

[5]

f6]

(7]

P.N. Brown, Decay to Uniform States in Food Webs,

SIAM J. Appl. Math., 46 (1986), pp. 376-392.

P.N. Brown, A Local Convergence Theory for Combined Inexact-
Newton/Finite-Difference Projection Methods, SIAM J. Num.

Anal.. 24 (1987). pp. 487-434.

P.N. Brown and A.C. Hindmarsh., Matrix-Free Methods for Stiff

Systems of ODEs, SIAM J. Num. Anal., 23 (1986). pp. 610-638.

P.N. Brown and A.C. Hindmarsh., Reduced Storage Matrix
Methods in Stiff ODE Systems. LLNL Report UCRL-95088. Rev. 1,

June 1987 ; to appear in J. Appl. Math. & Comp.

T.F. Chan and K.R. Jackson. The Use of Iterative Linear
Equation Solvers in Codes for Large Systems of Stiff IVPs

for ODEs, SIAM J. Sci. Stat. Comp.. 7 (1986). pp. 378-417.

R.S. Dembo, S.C. Eisenstat, and T. Steihaug. Inexact Newton

Methods, SIAM J. Num. Anal.. 19 (1982), pp. 400-408.
C.W. Gear and Y. Saad, Iterative Solution of Linear

Equations in ODE Codes, SIAM J. Sci. Stat. Comp.., 4 (1983),

pp. 583-601.

.30

(8]

(9]

[10]

[11]

S.P. Nersett and P.G. Thomsen., Imbedded SDIKK-Methods of
Basic Order Three, BIT 24 (19684). pp. 634-646.

S.P. Nersett and P.G. Thomsen., SIMPLE, a Stiff System
Solver. To appear in NTH Technical Report Series -

Mathematics of Computation.

Y. Saad. Krylov Subspace Methods for Solving Large
Unsymmetric Linear Systems, Math. Comp.. 37 (1981). pp.

1105-1126.

Y. Saad and M.H. Schultz, GMRES: A Generalized Minimal
Residual Algorithm for Solving Nonsymmetric Linear Systems,

SIAM J. Sci. Stat. Comp.. 7 (1986), pp. 856-869.

